Linearized oscillation of odd order nonlinear neutral delay differential equations (I)
نویسندگان
چکیده
منابع مشابه
Oscillation of Nonlinear Neutral Delay Differential Equations of Second Order
Oscillation criteria, extended Kamenev and Philos-type oscillation theorems for the nonlinear second order neutral delay differential equation with and without the forced term are given. These results extend and improve the well known results of Grammatikopoulos et. al., Graef et. al., Tanaka for the nonlinear neutral case and the recent results of Dzurina and Mihalikova for the neutral linear ...
متن کاملOscillation of second-order nonlinear neutral delay differential equations
In this paper, an oscillation theorem is established for the oscillation of second-order quasilinear neutral differential equation 0 ( )[( ( ) ( ) ( )) ] ( ) ( ( )) 0 r t x t p t x t q t f x t t t
متن کاملOscillation Criteria for Second-Order Nonlinear Neutral Delay Differential Equations
Some sufficient conditions are established for the oscillation of second-order neutral differential equation x t p t x τ t ′′ q t f x σ t 0, t ≥ t0, where 0 ≤ p t ≤ p0 < ∞. The results complement and improve those of Grammatikopoulos et al. Ladas, A. Meimaridou, Oscillation of second-order neutral delay differential equations, Rat. Mat. 1 1985 , Grace and Lalli 1987 , Ruan 1993 , H. J. Li 1996 ...
متن کاملNonlinear oscillation of certain third-order neutral differential equation with distributed delay
The authors obtain necessary and sufficient conditions for the existence of oscillatory solutions with a specified asymptotic behavior of solutions to a nonlinear neutral differential equation with distributed delay of third order. We give new theorems which ensure that every solution to be either oscillatory or converges to zero asymptotically. Examples dwelling upon the importance of applicab...
متن کاملOscillation of Solutions for Odd-order Neutral Functional Differential Equations
In this article, we establish oscillation criteria for all solutions to the neutral differential equations [x(t)± ax(t± h)± bx(t± g)] = p Z d
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2006
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2005.08.099